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THIS REPORT PRESENTS A DISCUSSION OF 2 TECHNIQUES WHICH
CAN BE USED TO REPRESENT AND INTERPRET MULTIVARIATE
STATISTICAL SYSTEMS WHEN IT IS FELT THAT THERE ARE CAUSAL
RELATIONS BETWEEN SOME OF THE VARIACLES. THE BASIC TECHNIQUE
IS PATH ANALYSIS AND THE OTHER 1S ITS EXTENSION THROUGH THE
USE OF RECURSIVE SYSTEMS OF EQUATIONS. THE ANAWYSIS 13
RESTRICTED IN APPLICATION TO RELATIONSHIPS BETWEEN
INTERVAL-MEASURABLE VARIABLES THAT ARE LINEAR, ADDITIVE, AND
ASYMMETRIC. TO MAKE A PATH ANALYSIS, THE VARIABLES IN THE
SYSTEM ARE CLASSIFIED AS EITHER EXOGENOUS, THAT IS, HAVING
THEIR VALUES DETERMINED BY FACTORS OUTSIDE THE SYSTEM, OR
ENDOGENOUS, THAT 1S, HAVING THEIR VALUES DETERMINED BY
FACTORS REPRESENTED BY VARIABLES WITHIN THE SYSTEM. BASED ON
-THIS ANALYSIS, A SET OF REGRESSION EQUATIONS REFRESENTING
THESE RELATIONS 1S FORMED. THIS SET S TERMED THE PATH MODEL,
AND GRAPHIC CONVENTIONS ARE GIVEN FOR DIAGRAMING IT. THE
COEFFICIENTS IN THE EQUATIONS ARE SIMILAR TO THE CORRELATION
COEFFICIENTS OCCURRING IN ORDINARY LEAST-SQUARES REGRESSION
EQUATIONS. THE ADVANTAGE OF THE PATH ANALYSIS APPROACM 1S
THAT IT ENABLES THE EXPERIMENTER TO UTILIZE ALL THE
INFORMATION AT HIS DISPOSAL; PARTICULARLY THAT CONCERNING
CAUSAL RELATIONS BETWEEN VARIABLES. THE TECHNIQUE IS
ILLUSTRATED WITH APPLICATIONS TO BIVARIATE AND MULTIVARIATE
SYSTEMS HAVING SINGLE AND MULTIPLE STAGES OF CAUSAL
INFLUENCE. SOME EXAMPLES DRAWN FROM ACTUAL RESEARCH PROJECTS
ARE INCLUDED. (DR)
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PREFACE

This essay is written for research workers in the behavioral
sciences., My assumptions regarding this intended audience have several
implications for the characteristics of the paper. First, it is not
nssumed that research workers have great proficiency in the logical
manipulation of symbols. Hence, thi? 1s no place fof advanced mathemat-
fcal and statistical niceties ~ rigorous, gemeral, and aesthetically
pleasing though they may be, Furthermore, derivations are carried out
in great detail and accompanied by extensive exposition. The aim of
the paper, although it may be contradictory, is to develop an informal,
1ntuit1ve rationale of the material for the reader which parallels the
formal, rigorous reasoning behind the topics. If this goal is attained,
then the researcher should be able to confidently apply the methods to
his own empirical problems. Finally, this paper is symbolic of my faith
that, for at least certain areas of behavioral science inquiry, the
rel&vant question is no longer "What variables are important?" but
"How are the important variables related?" It is my belief that the
methods presented in this paper are appropriate to the latter question.
On the other hand, straightforward application of statistical principles
of estimation and tests of significance are probably more relevant to
the former.

It is with great pleasure that I acknowledge my indebtedness
to Drs. John Plerce-Jones and Grover Cunningham of the Child Development

Evalustion~-Research Center for the time to do this research., Because
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of the pressure to produce "significant" empirical findings cxpoﬁoncod
in many behavicra} science research centers, the work directive to "be
creative" methodelogically is all too infrequent. Although I make no
claim to origination of any of the notions in this paper, their synthesis

herein from diverss sources is my response to the above-mentioned stim-

ulus. This implies, of course, that I am responeible for any errors in

the presentation.

Kenneth C. Land
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ON THE INTERPRETATION OF MULTIVARIATE SYSTEMS

Kenneth C. lLand

This paper constitutes a systemmatic 1n'.':roduction. to two pro-
cedures vhich have been developed té aid the rcprouﬁtation and inter-
pretation of multivariate statistical systems - path aml'yli.i and recur-
sive systems of equations. The first section defines path models and
path diagrams. It also develops two elementary applications of the pro=
cedure. In the second,section, the representation of statistical sys-
tems by recursive sets of equations is discussed. Fimally, the third
section of the paper builds on notions of the two preceding sections by
extending path analysis to highly complex systems of relations.

The author has attempted to provide both a systemmatic and,

to some extent, complete discussion of the topi.c'c. Therefore, two
appendices review the basic mathematics of least-squares correlation
and regression. If .tho reader has difficulty understanding the main

body of the paper because he hai forgotten some Nasic statistical no-

tions, he may read the appendices and then return to the main sections

of the essay. Furthermore, the author has attempted to show that the

noﬂ.ou of path analysis, at least for the systems discussed in this
paper, follow directly from the basic statistical notions of least-
squares correlation snd regression. Finally, a main goal of the pap-

er is to develop encugh basic understanding on the part of the reader
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that he may proceed to utilize the method in hu.m area of research.
Therefore, although the discussion and derivations are on an elemen-

tary level, they are accompanied by detailed upclitioﬂ to provide at
least an intuitive and informal understanding of what is really going

OoD»

Section 13 Path Analysis.

The methgd ot path analysis or path coefficients was devel-
oped by the gensticist Sewell Wright in a series of general essays
(weight, 1921, 1954, 1954, 1960a, 1960b) as an aid to the quantita-
tive development of genstics. Wright stated the primary purpose of
the method in his first general account (1921) as follows:

The present paper is zan atteapt to present a me-
thod of measuring the direct influence along each
separate path in such a system and thus of find-
ing the degree to which variation of g given ef-
fect is determined by each particular cause. The
method depends on the combination of knowledge of
the degree of correlation ameng the variables in
a system with such knowledge as may be possessed
of the causal relations. In cases in which the
causal relations are uncertain, the method can be
used to find the logical consequences of any
particular hypothesis in regard to them.

Wright elaborated the purpose of the method in subsequent papersi

+oo the meathod of path coefficients is not in-
tended to accomplish the impossible task of de-
ducing causal relations from the values of the
correlation ceefficients. (1954) ... Path an-

. alysis is an extension of the usual verbal in-
terpretation of statistics not of the statis-
tics themselves. It is usually easy to give a
plausible intovpretation of any significant sta-
tistic taken by itself. The purpose of path an-
alysis is to determine whether a proposed set of
interpretations is consistent throughout. (1960b)
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S0 much for the intentions of the method. Let us begin by developing

the basic notions of path analysis. From that point, we shall develop '
a few simple, almost trivial, applications of the path notions, Fin-
ally, we shall, after the introduction of some additional notions in

the next section of the paper, proceed to the path analysis of complex
systems of relations on variables in which the advantages of the pro-
cedure begin to gccumulate in such a manner as to make path analysis

worth the effort of becoming proficient in the method.

1.1, Path Models and Path Diagrams. We begin by restricting
the ;gglication of the method to sets of relationships among variables
which are (1) linear, (2) additive, and (3) asymmetric. Furthermore,
the variables must be measurable or be conceived as measurable on an ;
interval scale, although some of them may not actually be measured. We
shall return to these assumptions at the énd 0f the paper.

In such systems of relationships, a subset of the variablcs

is taken as linearly dependent on the remaining variables, which are
assumed to be independent. That is, the total variation of the inde-

pendent variables is assumed to be caused by variables outside of the

set under consideration. We may refer to such variables as "exogenous."

The exogenous variables in a particular set may be correlated among

themselves; however, the explanation of their intercorrelation is not
a problem for the system under consideration. The subset of variables
which are taken as dependent variables in the total set may be termed

"endogenous" variables. In contrast to the exogenous subset of vari-

ables, the total variation of the endogenous variables is asgumed to




be cg!gletclxvdctcrminnd by some combination of the variables in the sys-

ten. Note that this implies that, in some path models, a subset of the
endogencus variables may be conceived to have causal effects on other
« ogenous variables in addition to the direct effects of the exogenous
variables. Furthermore, in those systems of relationships where an en-
dogcnous‘variablc is not completely determined by prior (exogenous or
endogenous) measured variables, a residual variable uncorrelated with
the set of variables immediately determining the variable under con-
sidgration is introduced to account for the variance of the dependent
variable not explained by measured variables. The basic assumptions of
path analysis have been reviewed in these two paragraphs. Because they
are so basic, the reader may find it useful to re-read the assumptions
several times as the method is developed below.

The notion of the path diagram was developed by Wright (1021,
1934, 1960a) to provide a convenient representation of those systems

of relations which conform to the assumptions of the above paragraphs.

Path diagrams are drawn according to the following conventions:
(1) The pestulated causal relations among the variables of

the system are represented by uni-directional arrows extending from

each determining variable to each variable dependent on it.

~~] (2) The postulated non-causal correlations between exogenous

variables of the system are symbolized by two-headed curvilinear arrows

{l to distinguish them from causal arrows.

(3) Residual variables are also represented by uni-directional

e




arrows leading from the residual variable to the dependent variable.
However, literal subscripts are attached to residual symbols to indi-
cate that these variables are not measured.

(4) Finally, the quantities entered beside the arrows on a

path diagram are the symbolic or numerical values of the path and cor-

rela tion cosfficients of the postulated relationships. The symbolic

form of the path coefficient is Py 39 where the first subscript 1 de-
notes the dependent variable and the second subscript j denotes the
variable whou. dotcm:lnink influence is under comsideration. Note
t:hat' , since we are considering only asvmmetric causal relations, the
m{ﬁchnts Pi.j and Pjt will never appear in the same path diagram
together, i.e., aither Pyq or Pyq but never both will be postulated in
a given systems Furthermore, the coefficient P, g will ordinarily be
a partial path coefficient; however, we do not demote the variables
held constant after a dot as with ordinary lnaaf-qmol partial re-
gression and correlation coefficients. They will usually be obvieus
from the path diagram.

In this paper, we shall use the term path model to refer to
the regression equation or set of regression equations which repre-
sents the postulated causal and non-causal relationships ameng.:. the
variables under consideration. A property of path diagrams which con-
form to the above rules of representation is an isomorphism with the
algebraic and statistical properties of the postulated system of re-

lationships. In other words, there is a one-to-one correspondence be-

tween the postuiated causal and non-causal relations of a path model
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and its path diagram. This property and its usefulness will become more
ohrious as we develop the method. As an iliustrition of the conventions
of path diagrams, we have a possible system in Figure 1.

1.2. Path Coafficients and Path Regressions. Since all rela-
tions are assumed to be linear, we may write the dependent relationship

of X; on Xp, XgjeesyX, and residual X, in raw-score form as follows:

X3 = CpoXp + CysXg + eee + C1pXy, + C X, (1.1)
or, in deviation-units, we have
(X)) = oyp(XrMy) + cpg(Xy-Mg) + oov 4 €1, (RoMy) +
c1a(Xs~M,)

vhere M; is the mean of the ith variable. Letting x; = (Xy-M;), this is

X] = CyoXp + €13X3 + eee + Clp¥p + C1,%, (1.2)
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It 1s often more convenient to utilize each variable in standard init
form Let Z; = (X4-M;)/S; and Py, = ¢14(84/S,), where S; denotes the

standard-deviation of the ith variable. Then formulﬁ (1.2) becomes
Zy = PyoZp + PyzZz + ceo + Py Zn + PrZ, (1.3)

The coefficients cyp, etc., where the first subscript denotes
the dependent variable while the second subscript denotes the indepen-
dent variable, are of the type of partial regression coefficients but
may gxtst in a system with unmeasured hypothetical variables in addition |
to the residual variable. Hence, we shall refer to them as path regres- :
sion coefficients., Also, the standardized coefficients P1, etc., are

of the type called path coefficients or gstandardized path coefficients.
Each path coefficient measures the fraction of the standard deviation of

the dependent variable (with the appropriate sign) for which the desig-
nated variable is directly responsible in the sense of the fraction which

would be found if this factor varies to the same extent as in the ob=-

gerved data while all other variables (including residual factors) are
constant (Wright, 1934). This definition (except for determination of

sign) can be written as follows:

1o sl°2§...n,a . Sp
5 32'54...11,3
- 82 ° sl‘?S...n,a
L
81 82.3400.n,a
- S
__-___2.._-_ L 312 (1.‘)
81
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where S,, §Ke.anya indicates the standard deviation of the ith variable

with variables j through n and residual variable a held constant. Given

this definition of the path coefficlent, it is obvious that the squared
of the varience

path coefficient measures the portionfof the dependent variable for which

the independent variable is directly responsible.

.Naw that we have introduced the definition of path éocfﬁchntl
and path regressions, the alert reader will immediately note a similarity
of p'm:h regressions to ordinary least-squares partial regression coeffi-
cients and a similarity of path coefficients te least-squares standardixzed
partial regression coefficients or beta weights as discussed in the two
appendices.of this paper. It is true that for certain kinds of systems
of relationships the path coeffici<mts and regressions are identical to
the least-squares estimators. However, this is not true in general (see
Wright, 1934, 1954, 1860a). It will be our task to develop the method
of path coefficients only. fgr thésa.cases in which path coefficients and
regressions are identigal to the least-squares estimators for correlation
and regression coefficients in the remaiuder of this paper. We shall find
thai path analysis yields information about a statistical system which
helps render an interpretation possible. It does so, mnot by additional
statistical analysis, but primarily by forcing the researcher to utilize
all of the informatio:. at his disposal. We proceed to develop the pro-
cedure for clementary applications.

1.3. The Bivariate Path Model. The simplest type of relation

to which path analysis may be applied is the case of a dependent variable




X0 independent or exogenous variable X;, and residual variables X, and X3

X = ©21%) + copXp
or, in standard-form, the path model is

Z = ?2121 + Popdy (1. 5)

This is sizrly a case of bivariate least-squares regression with explicit
consideration of the residual term, Figure 2 1s a path diagram for this
model. Note that, since Zj is considered exogenous, Py, = 1.0, i.e., the
tota} variation of 2y is caused by ummeasured variables or variables outside
the present model. Because this is true for all exogenous variables, sym
bols for their residuals and residual path coefficients are often dropped
from the diagram in the interest of neatness of representation.

In this model, as shown in Table 1, the least-squares estimator
for the path cefficient Pp; is thc_ correlation coefficient rpy vhich is
also equal to the beta weight in the bivariate case as is shown in the
first appendixz of this paper (section A.1.1.)s Here, as in the appendices,
we symbolize least-squares standardized partial regression coefficients
or beta weights by B';j since we do not have a Greek letter for beta om our
keyboard. Now, let us consider the estimate and meaning of the residual
path coefficient. Since Zj, is independent of 2 (it was stated earlier
that the rasidual is independent of the immediate predictors in a model
and this also follows from least-squares sstiuation principles), we know
by the same principle as for Z; that rg, = B}

2b
residual represents all variables outside the system which cause variation

- Pab' However, since the

in Zp, it is unmeasured and we do not have a direct estimate for Ppy.
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1p ESTIMATORS OF PATH COEFFICIENTS FOR THE BIVARIATE PATH MODEL l

(1) Path Modelt 2Zp = PoyZy + Pyly

(2) Pyy = Ty = B

2 2
(3) r-l-Pal+P

) Vi-# = V-4

Therefore, wve must estimate it :I.ndi;ectly by utilizing the fact that the
squares of P21 and Pab must sum to unity. That is, ainco' the square- of
each of Ppy and Poy 1s the proportion of the variance of Z, explained by
2y and Zys respectively, and the variables are independent, the sum of the
proportions must be unity. Hence, P is the square root of the quantity -

one minus P:l or one minus rgi « as is shown in Table 1. This looks famil- 1

{ar. It is in fact what we define as the coefficient of aliénation in
the first appendix of the paper (swction A.1.2.). Now we ses the first
contribution of path analysis to the interpretation of regression sys-
tems: It provides a convenient and logically sound interpretation of
the coefficient of alienation as the path coefficient of the residual

term in the regression equation. It may be shown that the residual variable
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has a sero mean and unit variance or standard deviation since we have con-
ceived of all of the variables as being in standard-form. Hence, it may
be helpful for the reader to think of the residual as a dummy variable
having unit variance and xero mean and representing all unmeasured vari-

ables which cause variation in the dependent variable. The residual path

soefficient, then, e proportion of the standard deviation ts
uare is the pr on of the variance, of the dependent variable which

1s caused by all (urmeasured) variables outside of the set under consider-
ation in the path model. It should be noted that this interpretation of

the residual path coefficient is consistent with the derivations in Ap-
pendix I of the paper (equations Al.9, Al.10, and Al.11). However, the
hard-nosed reader who does not trust the above logic may easily demon~
strate the relation in a specific empirical case. If he has a computer
regression program available, he may simply predict a criterion variable
from a predictor variable, print out the residual variable, and thempre-
dict the criterion from the residual. The beta weight in thc second pre-
diction should be comparable to the square root of one minus r-square in
the first prediction.

1.4 _The Multivariste Path Model. We shall mow extend path
analysis to the multivariate case. Consider a path model in which an
endogenous variable z5 is dependent upon exogenous variables 21 and z2

and a residual variable Za:

23 = PypZ * Py * Byl

A path diegram of this model is given in Figure 3, and the estimators
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FIGURE 3.

TABLE 2¢ ESTIMATORS OF PATH COEFFICIENTS FOR THE MULTIVARIATE PATH MODEL

OF FIGURE 3.

Standaxdized Path Coefficients

(1) Path Model for Figure St Zg = PgiZ) + PgoZo + Pg 2,

(‘3‘; rsl - P31 + PSZ,..E
() rsp = Py Tio * Py .
(4) ryp given
2

(8) rgg * 1 % PgTey + Pyofyy + Py,
(e) rﬁa = 1 - PgiTey + Pgofyy = 1 - g°
(7) Pgg = |1 - B

Path Regression Coefficients
(8) sy = ;1 * Cz2bal
\& bgp = ca;bi2 * ez
(10) boy and by, given
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for the path coefficients and path regressions are shown in Table 2.
There are & number of important principles to be gained from
an analysis of Figure 5 and Table 2. First, let us derive the relation
of the standardized path coefficients Pij and the path regression co-
efficients G4y to the least-squares correlation coefficients T4y and
regression coefficients bij’ For example, take the case of the path

coefficient Pgye We are given

80, by substracting P52r1a from both sides we have

Pyi = T - Peerpo
By the same principle, P52 - Txp ™ P51r12' So, by substitution

B1 = Ty - (fsp - Pt Ty

Ts1 " Tefre t Psifigfio
Then, by subtracting P51r%2 from both sides of the equation, the equation

-

beccies

e .
Pyg - PByrip % Ty TgoTyo

oc, by factoring out Pg; on the 1gft-hand sids,

2
Py (1 = rp) = 5 - reerpp
whence, by dividing both sides by (1 - rfz ), we have

Psp = Tsy - TsoF12 (1.7)
1 - "'i:a

In this form, Pz bears immediate similarity to formula (A2.2) and is, in
fact, identical with the least-squares estimator for the standardized par-

tial regression coefficient. We may derive a similar formula for the path

FullText Provided by ERIC snsted




regression coefficients Cq4e the derivation for cg, is as follows!

bsy = cg + Cxaby _ (1.8)
51 = by - cgpa
= by - (bgp - exmbi2) by
= by - bsgby *+ cp;bizday
cs1 - °cmbiby; = bs1 - bs2ba
esp (1 - Bygbyy ) = by - bsgby
So, _ |

Again, in this form, cxy 1s identical to the least-squares estimator for
partial regressior coefficient in raw- or deviation-score form as given in
Appendix formula (A2.5). The above two derivations demonstrate that for
the multivariate path model, of which Figure 3 i{s & special case, the
least-squares

ath coefficients and path regressions are equivalent to the

estimators for the standardized and raw- or devistion-score partial re-
gresaion coefficients, respectively.

A second principle that emerges from Figurs S and Table 2 is
{1lustrated by formulas (2) and (3) of Table 2. We know that we are giv-
en the correletions of the exogenous variables in any path model (r12 in
Figure 3) and we are not interested in them. But formulas (2) and (3)
show the basic composition of the correlation of each exogenous variable
with the endogenous variable. Let us explore the derivation of, say,

formula (3). By definition of the correlation coefficient for variables
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in standard-score form, we have

= (1/N) = 252 (1.10)

31 1

where the sumation is over all observed Z-values for variables 1 and 3.
The convention regarding summations followed in this paper is that, 1if

a summation index ie not provided, the summation is over observed valuesj
otherwise, a summation index and explanatory note will be provided. Re-
garding (1.10), we know that Zz = the standard-score form of the criterion
variable - is totally dependent upon Z;, Z,, and 2. Hence, by substitu-

tion from formula(l) of Table 2 - the path model, we have

rz; = (1/N) = 2y (Pgy2y + PagZp + Pg,Z.) (1.11)
or, by expansion,
= (1/N) (Pgy £2.2; + PzgpZ 2)Zp + Psq L Z1Z,)
zzi + PBgy L 22y + Py, I 292,
N N X N

= Py (1.12)

and since (1) the sum of the squares of standard-scores for a variable 1is
unity, (2) the sum of cross-products of standard-scores for two variables
s the correlation coefficient of the variables, and (3) the correlation

of the residual Z, with an immediate determining variable of 23 is zero,

(1.12) reduces to

and we have derived equation (2) of Table 2.

There are several insights to be derived from (1.13). First,

it implies that, for a multivariate path model, the correlation of an




exogenous varisble and the dependent variable is the sum of the direct

effect via its path coefficient from that exogenous variable to the de-
pendent variable and its indirect effect(s) through its correlation with
the other exogenous variable(s) as measured by the product of the correlation
coefficient of the two exogenous variables and the path coefficient of
the latter variable. 8 a second contribution of path a is to
the interpretation of regression systemss: It provides an interpretation
of the correlation of a predictor and the criterion as a sum of direct
and ?.ndirect effects. This interpretation is certainly not obvious from
the typical formulasfor the correlation and beta coefficients! Of
course, a similar type of interpretation holds for formulas (8) and (9)
of Table 2 regarding total and partial regression coefficients in raw-
or deviation-score form.

Let us look again at formula (1.13). If the total correlation
between the exogenous variable Z; and the endogenous variable Zg is made
up of a sum of direct and indirect effects, and if the direct effect is
estimated by Pz, then the indirect effect must be estimated by r12P32’
or in a more generally applicable form:

Total Indirect Effect (TIE)
of 2z, on Zg = rg - Py (1.14)

Thus, we have an example of the third contribution of path analysis to

the interpretation of regression systems: It provides a general proce-
dure for exploring the indirect effects of an independent variable on a

dependent variable in a multivariate path model. This contribution will

become more interesting as the path models become more complex.
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Equation (5) of Table 2 may be viewed as a special case of (2)
and (3) =~ the case of complete determination of the dependent variable.
Let us explore the derivation of this equation. We know, as before that

the formula for the correlation of Zz with itself 1iss

rgg = 1 = (1/N) = 225 (1.18) .

By substitution of formula (1) of Table 2, this becomes

razs = 1 = (1/N) =25 (P52 + PBgaZp + PgyZ,)
= (1/N) (Pgy I23%) + Pgp IZsZp + Pga2sZ,)

N N N

For the same reasons as given above for the derivation of (1.13) and the

fact that, since Z, is independent of Zy and Z,, rz, = Pg. this becomes

2
2 2
- L Pzyrx + P
o 313t 3a o

which is (5) of Table 2. This equation may be further expanded by the

substitution of values for Tz and rzpo as follows

Xzz = 1l = P51 ( P31+P32r 12) + P32( P31r 12"?32) + Pga
2
= F§ + PyPyrip + PaPyrp t+ Py 4 Pﬁa

2 4 2 P
- T Py + 2 I PP + 1) (1.17
oy Tt o1 5t 5 gk e 1) (1.17)

vhere the range of j and k, (k>}), includes all measured variables.




Let us examine the implications of equations ‘1. 162 and §1. 17 {.

First, note that the single summation in (1.16) is equal to the sum of
the two summations in (1.17)s Second, note that (1.17) is identical to
equation (A2.13) of Appendix Two except for the explicit consideration of
the residual path coefficient squared = P%a. This implies that the sum
of the two summations in (1.17), and, therefore, the single summation in
(1.16), 1s equal to 22 . the square of the multiple correlation co-
efficient for the path model. This means that we can derive a simple

formula for the computation of the residual path coefficient as follows:

2 2
P s 1 = L Pa,r
| Sa o 173
2 2 2 ( )
= 1 = I Py 4 2 I PgyPerl 4
my Ok k, =1 3373k ik
= 1 - R2
So,
p, = V1 - R ) (1.18)
3a

A third implication of (1.17) concerns the important problem

of the interpretation of the path coefficients in the multivariate path
models Equation (1.17) shows that the total variance of 2z is a sum of

the squares of each path coefficient plus a term which measures the cor-
relational influence of the exogenous variables. Or, in other w.cmla s by
multiplying both sides of (1.17) by sg, it may be seen that the squared
path coefficients measure the portions of S: that are determined directly

by the exogenous variables while the other summation (which may be nega-

tive) measures correlational determination. Now we come to a unique
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characteristic of multivariate path coefficients -or beta weights as op-
posed to their bivariate counterpartss Whereas bivariate path or beta
coeffiéients, since they are identical with the corrﬁlation coefficient,
are bounded by + and - 1,0, the multivariate path coefficients may ex-
ceed + 1 or - 1 in absolute value; hence, the square of a multivariate
path coefficient may exceed + 1. This would seem to indicate that the
independent variable with a path coefficient-squared greater that 1.0
causes more than 100 per cent of the variance in the dependent variable.
But Fhia is impossible. So the question isg How does one interpret a

squared multivariate path coefficient greater that 1.0? Wright (1960a)

gives the following interpretation:

Such a value shows at a glance that direct action

of the factor in question is tending to bring a-

bout greater variability than is actually observed.

The direct effect must be offset by opposing cor-

related effects of other factors.
In short, the key to ihis difficulty would seem to lie in the defini-
tion of the path coefficient as given in equation (1.4) and in rela-
tion (1.17)t If a multivariate path coefficient is greater than + or

- 1, then one or the other of the terms in (1.4) must be greater that

+ or = 1. Furthermore, the cc-relation of the exogenous variable with
the other exogenous variable(s) as in equation (1.17) must be such as
to compensate for the tendency of the exogenous variable to cause more
variation in the dependent variable than is observed in the data of
concern. In a specific empirical example, it may be fruitful to ex-
amine each of the specific terms of the second summation in (1.17) to
provide insight as to how the correlation of the independent variable

of interest with the other exogenous variables is compensating for its




large direct path coefficient. This exploration may lead to insight, for
example, as to how the path model could be @ltered to achieve the same
multiple correlation with fewer exogeuous variablea.. As for the residual
path coefficient, its interpretation remains the same as for the bivariate
path model.

For the reader who 18 weary of this abstract discussion of
multivariate path models, we shall give an empirical example. However,
before we leave this topic, let us generalize several important formulas
to an n variable multivariate model. The general multivariate path model
is

2y = P2y + PygZy et P2 4+ Py Z (1.19)

vhere Z; is arbitrarily taken as representing the endogenous variable,

Zpy evey Z, as exogenous variables, and Z, as residual. The general for-

mula for the corxelation of any exogenous variable with the endogenous

-

variable becomes

n
Ty = Py ¥ an Py T4y
3#L
z 1.20)
jfa *13 14 .

Then the formmla for the total indirect effect of any exogenous variable

Zy on the endogenous variable Zy 18

Total Indirect Effect

(TIE) of 2, on Z n ry, - P

N (1.21)

11

Also, the formula for the complete determination of Z; becomes

e n

.
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P ! P r ° P ] 2

Finally, the formula for the residual in the general multivariate path

model 1is

P, W- R | (1.23)

Figure 4 illustrates the gemeral multivariate path diagram.




1.5. An Emnicical Example of the Multivariate Path Model. This

ewpiricul problem involves data kindly provided by Dr. Grover Cunningham
of the Child Development Evaluation-Research Center. He postulated the
dependency of a child's IQ score on 17 measures of correlation of per-
sonality characteristics of his parents. The exact form of his path

model 1is

209 = Pig,1%1 + Pig,2%2 * T18,3%3 * Pig,4%4 * F1s,5%
+ Pig,6% *+ P18,7%7 *+ Pig,8% *+ P1s,9%
+ Pig 1010 *+ Pis,11%11 * Pig,12%12 * Pi3,13%15
+ Pig,14214 + P18,15%15 * Pig,16%16 * F18,17217

+ PIB,aza (1.24)

where 24, 1 = 1,s0+,17 are measures of correlation of personality attri-
butes of parents, 21g is the chiild's IQ score, and 2, 1is the residual
factor. A path diagcam of the postulated model is given in Figure S.
All of the postulaiod causal relations are drawn in Figure &. How-
ever, note that cou2 of the postulated correlational relationships

ara drawn in the figure. The reason for this departure from the norm
is that, as the number of exogenous variables increases in a multivar-
{ate path model, the mumber of corrclational relationships between the
exogenous variables increases according to the formula for the binomial

coefficient?

(1.25)

n}
kT (n-k)!

where n is the total number of exogenous variables, k. is the number







of variables taken in a combination - this will nearly always be 2 for
multivariate path models, and ! is the factorial operatox. Hence, the

pumber of correlations between the 17 exogemous variables taken 2 at a

time would bes

17
(2') = il
- 17° 16’ 5?2
2:
- 272 = 136 correlations
2

In short, the representation of all 136 correlations among the exogenous
varisbles would make Figure 5 look more like abstract art that a path
diagram. Therefore, we shall leave correlational arrows out of Figure 5
and choose to keep in mind the posited intercorrelations among the exo-
ganous variables.

The numerical rather than the aydbolictvaluaa for the path co-
efficients have been entered in Figure 5. From these values, it is
obvious that exogenous variables 10, 12, and 16 make the largest direct
contributions to the variance of Z;g. However, the residual variable
z, still accounts for about 42 per cent of the variance of children's
IQ scores. The equation for total determination of Zg with the actual
numerical values for the direct effects, correlational effects, and

residual effects corresponding to equation (1.23) is

~ 218, 18 = 100 - 1,2654 - .6869 <+ .4215 (1- 26)

This equation shows that the correlational effect is negative, quite




large, and counteracts the overdetermination of the IQ scorss threugh the
. direct effects of the seventeen exogenous variables.
Let us loek at the total indireat effects of néh of the var-

iables:

TIEof lonl8 = rgy - Pig,1 *® 163 - 148 = 005
TIEof 2on18 = rjgpo = Pjgp = =089 - (=.143) = .054
TIEof 3onl8 = rigg - Pigy = =02 - (-.255) = .214
TIEof 40onl8 = 19,4 - P1g,4 " 011 - 117 = -,128

TIE of 5 on 18 - rm’s - = o102 - o117 = -,015

P18,5

TIE of 6 on 18 = s =227 - ("0&1) = «,008

Tie,6 - '18,6
TIEof Ton18 = 1=ygq - 218,7 - -,106 - (-.240) = .136

TIEof8onl8 = Tgg = Pjgg = --08 - (-.249) = .181

TIEof Sonld = rm,9 - - =-,139 - .200 = .061

P18,9
TIE of 10 en 18 = rle’lo" Ple’lo - ,,088 - Al = - 378

TIE of 11 on 18 = = -,088 - (-.196) = .108

T18,11 © Pm,u
TIE of 12 0n 18 = rle’la - 218,12 = « 074 - (-.‘7‘) - + 400

TIE of 13 on 18. - rm’u - 318’13 = ,120 - 164 = «,044

B <~ R

TIE of 14 on 18 = 18,14 " 218,14 - ,219 - .33 = ~-.120
TIE of 150n 18 = 18,15 ~ PIB,IB = L161 - .207 = -,046
TIR of 16 on 18 = =19 16~ Pyg 16 = 280 = (=.525) = .263
TIE of 1T on 18 = *18,17 218,17 - .085 - .128 = =,0855

There are observations which should be made regarding the

| estimates of the total indirect effect of each exogenous variable. First,

note that, although the variables with large direct effects tend also to




have large indirect effects, the rank-order of the variables by size of
indirect effects is quite unlike the rank-order according to size of
direct effects. Second, mote that, for the three-variable multivariate
path model discussed in section 1.4, the total indirect effect was the
only indirect effect for each exogenous variable, e.g., variable cne had
only ene indirect effect - through its correlation with variable two and
the direct effect of variable two on the endogenous variable. However,
in this problem with seventeen exogenous variables, each exogenous var-
iablg has sixteen different indirect effects, i.e., each exogenous var-
iable has an indirect effect through its correlation with each of the
other exogenous variables. In gensral, if there are n exogenous var-
iables in a multivariate path model, then there will be n - 1 indirect
effacts for each exogenous variable. This result follows directly from
formula (1.20). As an example, in the present model the indirect ef~-
fect of variable 1 on variable 18 through variable 2 is the product

r12 » Pig,2 = (-.260) (-.143) = 0.036 while its indirect effect
through variable 5 is the product ry3° Pg,s = (=.170) (-.235) = 0.040.
O0f course, the sum of all of the indirect effects of an exogenous variable
through all of the other exogenous variables is equal to the totil in-
direct effect of the variable. As an aid to the interpretation of a
specific empirical problem, it may be useful to examine the separate
indirect effects of each variable. It is out of such painstaking em-

pirical examinations that a multivariate behavioral science will be

built!




Section 23 Recursive Sets of Simultaneous Equations.

Up to this point in the paper, we have developed path models 1
for elementary multivariate systems. By "elementary" we mean systems
of variabdlias such that the postulated relationship is of an endogenous
variable dependent upon a number of exogenous variables which are taken
to be caused by variables outside of the set under consideration. The
reader who has systematically read the preceding section should be able
to comstruct and interpret a multivariate path model for any elementary

multivariate system he may encounter. However, the elementary multivar-

iate path model is not sufficient for all of the types of multivariate
syst:éms which the behavioral scientists frequently must analyze. Spe-
cifically, we often are willing to postulate that an exogenous varia-
ble effects an endogemous through its direct effect on another variable.

Or, in other situations, we are willing to postulate the causal depen-

dency of what we had considered an exogenous variable. This type of
multivariate system is illustrated by Figure 1 of section l.1. In short,
we often wish to isolate "stages" of causation. We shall take a brief
excursion from path analysis in thia section co develop a tool which

will allow us to represent such multivarlate systems with path models.

T R T W e R R T R - T R, m‘w

Obviously, the problem posed in the preceding paragraph is
the simultaneous representation of several relationships among a set of
variables rather than one particular velationship taken by itself. Pur-

‘ thermore, the reader has undoubiedly been exposed to the dictum that in

order to represent several relationships at the same time one must write
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and solve a set of simultaneous equations. The question is: which of the
many possible sets of simultaneous equations are consistent with our as-
sumption of asymmetrical causal ordering and allow a simple least-squares
solution? Let us examine the following simultaneous equations in which
we have represented each of 2y, Zpy ee.y 2, (in standard-units) as a de-

pendent variable with residuals Z,, 2y, .., Zkt

21 = P1222 + Plszs + cee + Plnzn + tha

. (2.1)

Zn - Pnlzl + Pnzza + eee + Pn,n-lzn-l + Pnkzk

This type of simultaneous equation structure will not suffice for our
purposes, because it does not meet the two conditions stated above.
First, it does not represent an asymmetrical causal system since it in-
cludes both the path coefficients Py and Pyy, for each 1 and j. Se~
cond, unless some of the path coefficients are set equal to zero, there
18 no set of values which yields a unique solution for the path éoeffi-
cients, and -:st-squares procedures camnot be utilized to solve the
system (Blalock, ppe 53-54).

We can solve both of the above difficulties by adjusting the
system so as not to pexmit two-way causation. This implies that, 1if
we allow for the possibility that Pij f 0, the Pji must be gero. In

equations (2.1), let us set each Py, equal to zero if j > i. This

P UV T g S




condition gives the following type of simultaneous structure which is

called a recursive system of simultaneous e uationss

Zy = P2,

2g = P2y + Pgilp + Byl

. (2.2)

2. = BZy o+ By foeer By g2, 04 R 2

There are several important ﬁropert:lee of recursive equations

as illustrated by (2.2). Fixst, note that Z, is taken to be caused only
by variables that are outside of the set under considsration. Hence, Zy

corresponds to what we have called an exogenous variable. However, Zp is

causally dependent on Zj as well as a residual vgriable. Furthermore, zs
1s causslly dependent on both Z4 and Zp and a residual variable. Finally,
Z, {s dependent on all of the other Z, and a residual variable. A second

important property of recursive systems is thac any of the remaining path

coefficients may be get equal to zero if it does not reflect a péatulated

causal dependensy. For example, if we set Py = 0, then we have a re-
presentation of a multivariate system in which there are two exogenous
variables - Zy and Zo. Pinaily, perhaps the most important property of
recursive systoms of regression equations is that we can make use of or-
dinary least-squares procedures to estimate ths postulated path coeffi-

clents (Wold and Jureen, pp. 51-52).
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let us now try to grasp some intuitive understanding of what
the term "recursive'" means when applied to a system of equations and build
a rationale for an assumption about recursive equati.oﬁs which we will £ind
convenient to make. First, note that, if we enter a recursive set of
“equations to determine the value of, say, 24, we will find it is depen-
dent on the values of all Z; for 1 < j. If we proceed to inquire into
the determination of the values of each of these Z; in turn, we will find
that they are dependent on the variables which preceded them in the sys-
tem until at last we come to the variable(s) the value of which is sim-
ply taken as given or observed and caused by no explicitly considered
variable. Thus, the statement that a system of equations is recursive
meana that there is at least one variable the value of which is not in
question and which successively enters into the determination of every
other variable in the system either directly or indirectly through the
determination of an intermediate variable. Now gonsider what happens
in equation (2.2) if an increase in the value of 2_ in associated with
an increase in the value of 2y, i.e., if there 18 a positive correlation
between "all other" variables which cause variation in Zy and those which
cause variation im Z;. Then, as 24 (= za) increases, the valué of Z,
will also increase, This will cause the estimate for Pp; to be spur-
fously high in order to compensate fo: the confounding effect of Z,.
Similar types of side-effects can be traced through equations (2.,2) if
any of the residual terms are correlated. Hence, in order to assure
that we get unbiased estimates of the path coefficients in path models

involving recursive systems of equations, we shall have to assume that




the residual terms in each of the equations are uncorrelated. Practi-
cally, this means that, in a specific empirical problem, we shall want
to bring as many as pessible of the common components of the residuals
explicitly into the path model so that the residuals will have or approx-

{mate zero correlatien. Furthermore, we sha®l find that we can test

this assumption in certain models.

Section 33 Path Analysis Revisited.

3,1. The Multi-gtage, Multivariate Path Model. Consider again
the problem posed at the beginning of Section 2, Briefly, the type of

system we would like to handle concerns "stages" or "chains" of causa-
tion. The ndtion of recursive systems of equations provides a tool for
the development of a general type of model for such multivariate systems
vhich we shall term the multi-stage, multivariate path model. Because
there are so many possible specific uses of this Jnodel, it is virtually
impossible to discuss it in general. Therefore, we shall utilize an
example from a sociological problem posed to the author by David C. Eaten.
Eaten was concerned with the explanation of the personal income of heads
of houssholds in the United States in the year 1959 by a limited mumber
of personal characteristics of the heads. From a gsearch of relevant
literature, he was able to find a number of bivariate correlations among
his va~iables of intersit. Furthermore, on the basis of time sequences
and theoretical assumptions, he was willing to postulate a causal order-
ing among the variables. Specifically, he was interested in explaining

the personal income of heads of households from their personal character-




istics of (1) race, (2) age, (3) education, (4) occupation, and (5) full-
ness-regularity of employment. Since he was not willing to consider
each of these variagbles as exogenous with no causal relations to or from
the others, the a#lsmentary multivariate path model was obviously not the
appropriate model. For éxample, because of its priority in time (being
determined at birth), race was taken as an exogenous variable which gen-
erally has had an asymmetrical causal effect on the level of education,
status of occupation, and employment-fullness-regularity of heads of
housaholds through institutionalized patterns of racial discrimination
throughout the society. On the other hand, race was postulated to have
only a symmetric non-causal relationship to age which, in turn, was taken
as an exogenous variable having an asymmetrical effect, first of all, on
education because of the differing levels of educational experience of
each age cohort (generation). Age was further postulated to have an
asymmetric positive effact on occupational statug of heads of housghold
through institutionalized patterns of seniority, tenure, and promotion.
This reiationship was also expected because of the exclusion of heads

of households 65 or more years old from the sample - an age at which the
relationship would be expected to become negative for a number of rea-
sons. Finally, age was expected to have direct effects on employment=-
fullness-regularity and personal income of heads of households. Educa-
tion of heads of households was taken as tue first of the dependent
variables. However, in addition to its postulated dependency on race
and age;, education was itself taken to have direct effects on the cccupa~

tion, employment-fullness-regularity and personal income of the heads




from a consideration of institutionalized patterns of hiring and empley-
ment in indust:r;ial societies. Again, for institutional reasons, the status
of a head's occupation was taken to be dependent on his race, age, and
education while, in turn,. occupation was postulated to have an asymmetri-
cal effect on the fullness and regularity of employment and income of
heads. Finally, employment-fullness-regularity was posited as dependent
on the other variables and as determining income. A path diagram for
this complex pattern of relationships is given in Figure 6 with the num-
er:l.ca‘l values of the postulated path and correlation coefficients.
Having mapped the 6 variables onto a path diagram representing
the rough notions of causation with which we began, it was quite simple
to write the following racursive system of regression equations as the

path modelt

2; = P,
2o = PpZp
2y = PgZ2 + Pyl
2, = P2y + Pyolp
25 = PgeZ, + Pgsls
Z2g = Pgsls t FPguly

+ Pz 2, (s.1)
+ PLIZI + P“zd

+ Pseza + P5221 + PgeZ,

+ PgzZz + Pgolp + Pgi21 + Pgels
Furthermore, with tha aid of both the path diagram and the path model,
twenty-three specific predictions regarding direct and indirect effects

of the variables were deduced. All but two null hypotheses regarding

these propositions were rejected. The reader is referred to Eaton (pp. 105~

117) for complete details and evaluatien.
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The results for multivariate path models regarding computation
of residual path coefficients and indirect effects hold also for this
type of model. However, one must calculate a residual path coefficient
for each equation in the path model by using the multiple correlation
coefficient for that equation. As before, the correlation between any
two variables of the model may be expanded along the 1ines of formula

(1.20)s 1Let us explore the correlation of Zg and Zg5 as an examples

rgg = (1/N) Z 2s2g/N
= (1/N) =25 (P2, + PgeZs + Ppola + PBgyZy * Peglq)

= Pg gy t+ Pgg + Pgolox + PgTyy (5.2)

The general form of this expansion theorem for multi-stage, multivare-

iate path models is

Ty B Potax (8.8)
where 1 and j denote two variables in the system and the index k runs
over all variables from which paths lead directly to Z4. If we continue

to expand (3:2) by means of (3.3), we have

res = Pgy + Pgfyy + Pgofos t Py (1/N = 2324)
= Pgg + PgyTe, + Pgotoy + Ps; 1/N 2 2 (PgoZp +
Pz + Pscle)
PSS + P&r“ + 1’521'23 + 1’511’321'12 + 1’511’31
= P * Py, + Pg2 (1/N £ 225) + PgyPsaryp + PPy
= Py + Pgray + P 1/N E 2z, (PgoZpy + PgyZy + r&zc)

+ PgPgolyp + PPy




= B + Pgrg b PePap t BoPuPay + FgfaoTio

+ P Pa)
Pgg + Pg, (/N £ 242,) + PoPy, PooPy oy *
+ PyPgolip + PPy
= Pgg + Pgy L/NIZg(PigZy + Buglp + FyZy *+ P 24)
+ PgoPe, + PgoPyiPoy + PgiPyFio * PeyPey
Poy + PguPys * PraPystes t PePeiTys + Poofan
+

+ P PePy t+ P Pasfin + PPy

= P + PgPux + PgPyo (1/»:22223) + PgPey (1/“22125)
+ PgPey + PgoPyiPoy + PgiPyolio + Pg Py

= P+ PgyPus * PePuo 1/1~1>:z2 (25222 + PgZy ¢ pSczc)

+ Rk 1/NE 2, (PgpZy + PygyZy + psczc) + PgoPes

+  PgpPgiPoy + PgiPaoTyp + PgiPy

@ . . , '
P+ PePus t PeTuoPen * PsPucfniio + PguPy Paots

(3.4)

This type of expsnsion can be carried out for all of the correlations be-

tween any two variables in the model. It may yield valuable information




regarding indirect effects. If we subtract Pgg from both sides of (5.4),
then we will have the familiar formula for the computation of the total
indirect effect of variable 3 on variable S. Furthermore, in some em-
pirical problems we may want to examine each of the separate indiract
effects as on the right-hand side of (5.4). An unusual finding regard-
ing the relationship of status of occupation (z‘) to personal income of
of head (Zg) in the present example was that ite direct effect was ex-
tremely small (0.020) when employment-fullness-regularity was controlled.
However, the indirect effect of occupation on ircome through its direct
cHoc.t on employment-fullness-regularity (Zg) and the direct effect of
(2g) on income, 1i.es, the product (Pss) (Pgg)s was +0.238. We must
emphasise to the point of becoming polemical that it is through such
detailed findings as this that we will move behavioral research and
theory beyond the quagmire of simplistic bivariate propositions to the

raalm of multivariate knowledge!

-

At this point, we wish to reiterate that the model of Figure 6
is only one example of a possible infinity of specific multi-stage, mul-

tivariate path models. However, it suffices to illustrate the general

principles to follow when dealing with a complex pattern of dependent
relationships.. From his experience with such problems, the author sug-
gests the following steps as a general procedure. First, since the re-
searcher often approaches multi-stage, multivariate problems with only
crude ideas of the proper causal structure to postulate, he should begin
to formalize his notions by mapping them onto a path diagram which he

may use as a heuristic device until he is satisfied that it represents




the causal sequences as suggested by the current state of theoretical
and empirical knowledge about the variables of interest. In general,
the multi-stage, multivariate path model may include any number of ex-
ogenous variables and any number of causal stages with any number of
dependent variables at each stage. Furthermore, as emphasized in the
discussion of recursive systems, path coefficients from all preceding
variables in the model need not be postulated for subsequent variables
- note that in Figure 6 all path coefficients were postulated - 1if
there is some theoretical or empirical reason for postulating that they
will be sero or near-sero. Of course, if one or more path coefficients
1s predicted to be zero, then the researcher should run the model both
with and without those path coefficients to ascertain whether or not
they actually disappear in the empirical data. Second, 1€ the research-
er is satisfied with the structure represented by his path diagram,
then he should write the path model or set of recursive equations which
is implied by the diagram. This set of equations constitutes the ac-
tual regressions from which he gets estimates of the postulated path
and correlation coefficients. Third, he should compute the residual
path .coefficients by applying formula (1.23) to each of the equations
in the path model. Fourth, the researcher should compute estimates of
total indirect effects of prior variables on subsequent variables from
formula (1.21). [Fifth, if he is interested in probing in detail the
manner in which a prior variable effaects a subsequent variable, then
he is encouraged to expand the correlation between the two variables

along the lines of formula (3.3) and as illustrated by equation (3.4).




This five-fold procedure should facilitate the representation and inter-

pretation of the most complex sequences of causal dependency.

3.2, The Multi-stage, Bivariate Path Model. If we postulate a

series of causal stages but restrict the number of variables at each stage
to two measured variables and a residual, then we have a special case of
the multi-stage, multivariate path model which we may refer to as the
gsulti-stage, bivariate path model or simple causal chain. It is imstruc-
tive to examine this particular model because of the opportunity it pro-
vides to test the basic assumption of recursive systems of regression
equations, viz., that #he residual terms of the equations are uncorrelated.
For purposes of illustrating this model, we shall use the com=
putations and data reported by Duncan (pp. 10-12). He postulated a mul-
ti-stage, biwariate path model to account for recently reported corre-
lations between the occupational prestige ratings of four studies com-
pleted at widely separated dates: Counts (1925), Smith (1940), National
Opinion Research Center (1947), and NORC replication (1963). The path

model postulated by Duncan is given by the recursive systems

zy = Plaza

2p = PyZ, + Py?y (3.5)
25 = Pseza + 93cz c

Z‘ = P4325 - P‘dzd

where Z, = Counts prestige ratings, 1925, Z, = Smith prestige ratings,

1940, Zz = NORC prestige ratings, 1947, Z, = NORC prestige ratings, 1963,

and Zgy 2y 2. Zy are residual variables. A path diagram of the postu-




lated model with numerical values for the path coefficients is given

in Figure 7(a).
Table 3 gives the estimators of the path coefficients for the

simple causal chain of Figure 7(a). As was shown in section 1.3 and
{1lustrated in formulas (1), (2), and (3) of Table 3, the estimators |

for path coefficients in the bivariate case are correlation coefficients.

Furthermore, equations (4), (5), and (6) of Table 3 show that the com-

putation of the residual path coefficient 1s an immediate result of the

e e e P ——

formula for complete determination of the dependent variable. However,
up until now we have not questioned the assumption of recursive sys- |
tems that the residuals are uncorrelated. Formulas (7), (8), and (s)

{1lustrate a condition which must be met by simple causal chains 1if

that assumption is tenable. That is, if the assumption of uncorrelated
residuals holds, then the observed correlation coefficient of the al-
ternate or terminal variables of Figure 7(a) must equal the product of

the observed path coefficients connecting them. Duncan (p. 11) gives ’
- {

the following calculations for Figure 7(a)s
i

Variables Calculated =~  Observed Difference
Correlation Correlation

rs; »951 »955 .004

T4o «972 .971 -.001

r41 »942 +934 -.008

Although the discrepancies between inferred and observed corre-

lations are small and trivial emough so¢ that we may accept the hypothesis

of a multi-stage, bivariate®path model with uncorrelated residuals, Duncan,
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LE ES TORS OF PATH COEFFICIENTS FOR THE PATH MODEL OF FIGURE 7(a).

(1) 22 = Bz
(2) rzp = P3pp
(5) r‘s - P‘s

(5) 1rg = 1 = P5, + P,
(6) 14 1 Piz + Pgq

(1) 5 = Pafa
(8) T = PgoPys
(9) r4q ™ PoPaolys

to illustrate what should be done in case the discrepancies had been large,
constructed the alternative model shown in Figure 7(b). In this model,
Duncan has dropped the assumption of uncorrelated residuals and computed
the correlations among them which must be postulated to explain the small
discrepancies between the {nferred and observed path coefficients dis-
cnssed above. However, the assumption that a residual is uncorrelated
with the immediately preceding variable in the chain holds for 7(b). The
formulas provided by Dincan (p. 12) which yield the desired coefficients
when solved in order are given in Table 4.

In general, as Duncan points out, 1f we are considering a
k-variable causal chain, we must estimate k-1 residual paths (3 for

Figure 7(b)), (k-1) (k-2)/2 correlations between residuals (3 for Figure

7(b)), k-1 paths for links in the chain (3 for Figure 7(b)), and k-2
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TABLE 4: ESTIMATORS OF PATH COEFFICIENTS FOR THE PATH MODEL OF

FIGURE 7(b).
(1) rpy = .968
(2) x5 = .982
(3) ry = 990
(4) 1 = 1 = By + PG
(8) gy = 1 = Pg + PG
6) ry = 1 = B+
(7) rgy = 85 = ByPyp + Pgry

(8) g = 934 = PygPoPy  + PPty + Pr,

(8) 1z = +9TL = BigPry + PyPuryy + PyPegTis
(10) ro ° 0O = Pabrbd + 1’211:‘:1

(11) x4y = 0 = Pyr g + Pyoryy
(vhere rpq = Pgyr,, + Pabrbd)

-

correlations between the initial variable and residuals a,b,...,J in the
chain (2 for Figure 7(b)). This yields a total of (k2 + 3k - 6)/2
quantities to be estimated. For the purpose of estimation, we may con-
struct k(k-1)/2 equations expressing known correlations in terms of paths
(as in equatioms (1), (2), (3), (7), (8), and (9) of Table 4), k-1 equa-
tions of complete determination (as in equations (4), (5), and (6) of
Table 4) and k-2 equations in which the correlation of a residual with
the immediately preceding variable in the chain is set equal to zero
(equations (10) and (11) of Table 4). This gives (k¥ + 3k - 6)/2

equations, the precise number needed for a unique solution.

ERIC

Full Tt Provided by ERIC.




The procedure for testing the assumption of uncorrelated resi-
duals, as illustrated by Duncan's example, may be useful in exploring
relationships among variables which lave been traditionally assumed to ]
form simple causal chains. If, after the uncorrelated residual assump- |
tion is abandoned, the empirical data are still not sufficiently accounted y
for, then the assumption of a simple causal chéin should be relaxed. Dun-
can's comments (p. 12) regarding his example are particularly appropri-
ate heres

¢e. The solution may, of course inciude meaningless
results (e.g., r > 1.0), or resulta that strain
one’s credulity. In this event, the chain hypo=-
thesis had best be abandoned or the estimated paths
modified.

In the present illustration, the results are
plausible enough. Both the Counts and the Smith
studies differed from the two NORC studies and from
each other in their technigues of rating and sam-
pling. A further complicatior is that the studies
used different lists of occupations, and the ob~-
served correlations are based on differing num-

bers of occupations. There is ample opportunity, i
therefore, for correlations of errors to turn up ‘
in a variety of patterns, even though the chain f

hypothesis may be basically sounds We should
observe, too, that the residual factors here in-
clude not only extrinsic disturbances but also
real though temporary fluctuations in prestige,
if there be such.

What should one say, substantively, on the
basis of such an analysis of the prestige rat-
ings? Certainly, the temporal ordering of the
variables is unambiguous. But whether one wants
to assert that an aspect of social structure
(prestige hierarchy) at one date fcauses' its
counterpart at a later date is perhaps question-
able., The data suggest there 1s a high order of
persistence over time, coupled with a detectable,
1f rather glacial, drift in the structure. The
calculation of numerical values for the mode]
hardly resolves the question of ultimate ‘reasons’
for either the pattern of persistence or the tem-
po of change. These are, instead, questions raised
by the model in a cleax way for further discussion
and, perhaps, investigation.

B osnrcrcank




$.3. The Path Decomposition Model. Because many of the depen-

dent variables of interest in the behavioral sciences are composite var-
iables, we now discuss a use of path analysis which may be }cfcrrcd to as
the path decomposition model. Thus, various tests or scales commonly used
in behavioral research are composed of subscales or subtests. In the
case of such composite dependent variables, it is often of interest (1)
to compute the relative contributions of the component variables to varia-
tion in the composite variable, and (2) to ascertain how independent var-
. iables effect the composite variable via its components.

We shall again utilize an illustrative example provided by
Duncan (pp. 7=10). However, since the subject matter of his example is
rather specific (population density), we shall discuss his model sym-
bolically; the form of his composite variable has wide generality. The

raw=score definition of the composite variable Yo is

-

Vo = V3 * V, ¢ Vs

let Xo = log Vb, Xy = log Vl, Xp = log Vy, and Xg = log VS. Then the

composite variable is an additive combination of Xy, Xp, and Xy3
Xo = X + Xy + Xg
If each variable is expressed in standard-score form, we may write
29 = Py2; + PoZp + Pogls (s.6)

as the path decomposition model where Zg, ..., Zg are the variables in

standard-score form and Py;, Poo POS are the path coefficients involved
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in the determination of Z, by 295 Zp and ZS' In the case of complete
determination by measured variables, the definition of the path coeffi-

cient, as given by formula (1.4), reduces to a ratio of standard devia-

tions since the partial regression coefficient part of the definition
(cij) is unity. Hence, the following numerical values of the path co-
efficients, as Duncan indicates (p.8), may be computed without prior

calculation of correlations:

o ml o
A -

Ppy = S51/89 = 132 8, = .91 8, = 065 |
Pogg = S2fSp = 468 S, = 2%
Pos L Ss/ So = .821 83 = - 403

The path diagram provided by Duncan (p. 8) for the present
path model is given in Figure 8(a). Table 5 gives Duncan's correlation
matrix for the present problem. The composition of the correlation

of the composite variable with its component parts may now be written

from formula (3.3).

tor = Por t Poof12 * PosTiz -.419
re = Porfiz * Pz * Togzs " %6
P - .923

tos = Poris * Fozfes t o3

As Duncan points out (p. 8), this preliminaxy analysis gives

a clear ordering of the three components in terms of relative importance,

as indicated by the path coefficients, and shows that one of the com-
ﬂ ponents is actually negatively correlated with the composite variable,

because of its negative correlations with the other two components.

Aruitoxt provided by Eic:




TABLE 53 CORRELATION MATRIX FOR LOGARITHMS OF VARIABLES IN DUNCAN'S
PATH DECOMPOSITION EXAMPLE

_—

Variable 21 22 - Z4 25
Zo -.419 .63  .925  -.665  -.380
2y -.625  -.515  .296 .09
Zp « 305 -+ 594 -, 466
Zg -. 517 -. 226
24 .549

Duncan postulates a second path model to account for the rela-
tionship of the composite variable to two independent variables via its

compdnents. A path diagram for this model is given in Figure 8(b). The

path model ist
2, = Peg?q ‘
25 = Pggl,
25 = Py, + Pgglg + Pzl (8.7)
2o = PpgZ, + PogZs + Paply
2y = P2y t Pygls + Pl
20 = Poi1Zy t+ Poolz *+ Fosls

It should be noted that zero correlation is not assumed in this
model for the residuals Z,, 2,, and 2.« The path coefficients = Pgy, Pxss
Pogs» Pogs Py and Pls - are standardized partial regression coefficients
as for other multivariate path models. Furthermore, the residual path

coefficients are given by formula (1.23). Duncan's discussion of the




-.315

1.00 — 348 ,
24 )l Z4 21 .182 |
-.ml > SR
- 484 20

Zo ..
«200 . 1687 -+ 616
“0562
- 1.00 e
F |ze ‘ ,‘zs -083 24 o ' .183
(b)
FIGURE 8.




e [ s Rt L U )

computation of the residuals (pp. 9-10) is appropriate (using the sym-

bols of this paper):

The two independent variables by no means ace
count for all the variation in any of the compon=
ents, as may be seen from the size of the resid-
uals, Pyg, Pop, and Pzeyees It 1is possible, ne-
vertheless, for the ingependent variables to account
for the intercorrelations of the components, and,
ideally, one would like to discover independent
variables which would do just that. The relevant
calculations concern the correlations between re-
siduals. These are obtained from the basic theor-
em, equation [3.3], by writing, for example,

ros = Ppgfzs + Postss t PapPacTber

which may be solved for rpc = «Ol4. In this setup,
the correlations between residuals are merely the
conventional sacond-order partial correlations;
thus r,p ™ r12,45° Tac = F13.45 and ry. = ros,
Partiai correlations, which otherwise Rave little
utility in path analysis, turn out to be appro-
( priate when the question at issue ie whether a set
of independent variables 'explains’ the correla-
tion between two dependent variables. In the pre-
gent example, while roz = +305, wve f£ind rpe =
ros, 45 = +Ol4. Thus the correlation between ...
Zo and... Zg 1s satisfactorily explained by the
respective relationships of these two components
to e zt and ... zi. The same is not true of the
ng

ons involv

' correlat «»s 21, but fortunately
this is by far the least important component...e ’
Finally, Duncan gives the following equations as the most com-

pact answer to the question of how the effects of the independent vari-

ables are transmitted to the dependent variable via its components (p.10):

ro4 = Porf1e + Pootze Pozrzs
- 039 - .218 - .424 = ~-.663

(s.8)

and

(3.9)
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From these results, we note that the composite variable is negatively
related to both independent variables, but the effects via the first
component, although small, are positive. Furthermore, the relative
importance of the effects of Zy and Zg via the cecond and third com-
ponents is reversed in the two equations. Finally, a more detailed
examination of the fransmission of effects can be obtained by expan-
sion of (5.8) and (3.9) by formula (3.3).

S.4. The Basic Assumptions of Path Analysis and Model Test-
dog. At this point, it is appropriate to discuss the basic assump-
tions of path analysis, answer possible objections to the methiod, and
mention extensions of the procedure which we have not devaloped in
this paper.

The Assumptions of Liuearity and Additivity. The assumption
of linear, additive relationships among the variables of interest is
made in most applicatiors of correlation and regression analysis. Past
empirical research in a particular problem area is a good basis for
judging the temability of the linearity and additivity assumptions.
Otherwise, there are simple procedures such as point-plotting to explore
the degree to which the assumptions hold in a specific set of data. Fur-
thermore, although a relationship may not te linear throughout its en=
tire range of values, it muy be 1inear within the range of values under
consideration, Finally, there are a nvaber of convenient transformations,
such as the logarithmic transformation of section 3.3, which may be used
to transform data in order to meet the linearity and additivity assump-

tions. The important poiat to erohasize is that these are assumptions

which are specific to the particular area of investigation and must be




not ordivarily willing to assume that a change in a variable caused a

;
\'-;w*

5 prior change in another variable. A second source of information for the
) causal ordering of the variables may be existing experimental or case-
study results. Finally, the theoretical assumptions of the particular
substantive area provide a third source forthe asymmetry assumption.
v¢1lowing Wright (quotation in section 1), we view a causal assumption
a3 less of an assertion about empirical reality than as a strategy for
in iry. Path analysis, by itself, cammnot prove the vilidity of a set
of «.usal assumptions. It can only give the ccmsequences o7 an assumed
caus: . sequence for a set of data. It 18, of course, the responsibility
of the regsearcher to defend his causal assumptions in a given empirical
study.

A particular type of behavioral science relationship for which
the asymetric path model may not be appropriate is the so-called "in-
terdepend :nt" relationship. That is, we often er. £ variables such
that a ch.nge in one cause3 a change in another which, in turn, leads
to a changz in *he former, etc. The relationship of levei of education
and racial discrimination provides a common sociological example. At an
original time of observation, some element in the social system may cause
an increase in the level of Negro education. This increase in level of
- education may cause a decrease in racial discrimination. Furthermore, the
decrease in racial discrimination may feedback through a number of mechan-
isms to cause another increase in the opportunity for, and level of,Negro
education. Thus, the cycle may cortinue until an equilibrium position

of the variables is establiched. How can we handle this type of relation-

<
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ship with asymmetric path models? The answer would seem to depend on the
rapidity of the feedback relationship. In the case of a relatively rlow
feeddack process, uur asymmetric path models will give us a crude, but
perhaps msaningful, cross-section snapshot of the system which only
approximates the "real" causal structure. Furthermore, the path model
will have to be continuousiy updated over time as the regression rela-
donships change. For those systems of relationships in which the feed-
back is relatively rapid, however, our asymmetric path models must be
modified. Wright (1960b) has indicated how this may be done iu certain
specific types of problems. Economists also, with the problem of the
rapid adjustment of market forces, have dealt at considerable length with
this type of model. 7he present author intends ‘o add a spetial section
on feedback models to this paper in the near future.

The Testing of Models. Because of our emphasis on the repre-
sentational and interpretive uses of path models, we have not addressed
ourselves to the problems of tests of significance for path coefficients
and testing procedures for alternative models in this paper. These topics
a.lao demand treatment in a special section. As a rule of thumb, however,
we propose, particularly for small samples, that a criterion of at least
0.10 be set for the retention of a path coefficient in a model. This
means that the variable must account for at least 10 per cent of the stan
dard deviaticn, and 1 per cent of thc variance, of the endogenous vari-
able. A cricerion of this level should not lead to the premature rejec-

tion of too many important variables.
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ADDITIONAL READING

The topics discussed in this paper are referenced in a wide
variety of publicatiors in biometrics, econometrics, and statistics.
If the reader desires to read their treatmsnt in other sources, he may

begin with the publications listed in the bibliography. Any of the

Ty

articles by Wright are worthwhile discussions of path analysis. How-

>R

ever, his June 1960 Biometrics article is a particularly good summary
trestment. The articles by Duncan, Kempthorne, Tukey, and Turner and
Stevens also provide good treatments of path analysis from somewhat
different perspectives.

Recursive systems of equations are discussed on an 'eleuen-

tary level in the book by Blalock. However, a somewhat more techmical

! treatment is given in > Simon and Wold and Jureen references.

-
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APPENDIX I

THE MATHEMATICS OF BIVARIATE CORRELATION AND REGRESSION

In what follows, we have not sought to develcp a distinct pop-
ulation theory and a distinct sample theory of correlation and regres-
sfon. We deal primarily with sample theory and utilize population theory
in a heuristic fashion. Consider the case in which we have observations
on two contimsous, intervally-measured variables X and Y in raw-score form.
Then we may define the correlation coefficient as follows:

Definition A.1l.1. Suppose that X and Y are continuous, inter-
vally-measured variables. Then the statement that x is the correlation
coefficient of the observed values of th_e\ X and Y varisbles means that
r is a mumber and tiat r is a measure of the degree of linear covariation

of the observed values of X and Y such that

r = L (X=My) (Y-My) = I xy

N 8, S, N 8 S

-

(Al.1)

where X and Y are the observed values of the variables in raw-score form,
M, and Hy are the means of the raw scores for the X and Y variables, &,
and Sy are the standard deviations of the observed values of X and Y, and
x and y are the observed values of the X and Y variables in deviation-

score form, i.e.,, x = x-ﬁ, and y = Y-}%.

Now we would like to develop a means for predicting Y values
for given X values and for interpreting the correlation coefficient. We
begin by assuming that the X and Y variables are linearly related, i.e.,

we assume that the functional form of the relationship of Y and X in the
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populution of X and Y values 13 a line of the form Y = A" + B"X, where
A" is the Y intercept (value of Y where the line crosses the Y axis) and
B" is the slope of the line ( the inciination of the line to the X axis).
| At this point, then, our problem is merely to develop estima- 1
tora of the A" and B" coefficients from the observed £ ani Y values.

Of the severel methode of estimation, we shall follow traditional prac-

tice here and adopt as a basis for an estimated best-fit lime the cri-

terion that the sum of the squares of the deviations from the line shall
be as small as possible. In symbols, let Y' = A + BX, where Y° (read
Y-primej is the value estimated,for a given X, of the Y variable, A 1is
the estimated value for A", B is the estimated value for B", and let

Y be the observed ¥alue of the Y variable. Then (Y-Y')2 represents the

squared deviation of any Y from the estimated value. Our problem is to

Ridlak il 0L

choose the estimators A and B so as to idke Z(Y-Y')2 as Small as poss~

{ble., We shall find it more convenient to deal with both the equation,

y' = a + bx, and the sum, Z(y--y')2 , in deviation-units, with y' and y
as deviations from.M& and x = X-M,. This 1s merely a translation of
the reference axes to make the origin coincide with M, and H&. Therefore,
the value of a in the equation becomes zero and we shall drop it from
further consideration.

This allows ns to write y' = bx as the equation for estimat-
ing y, in deviation-units, from x, or deviation-values of x. Our preb-
lem now is that of determining the value of b which will mkmz(y-y')2

a minimum. It shall be simple, once the optimal value for b has been

determined, to pass back to the original reference frame, ths gross-
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score axes, by substituting for y' the values Y'-}g,, and for x, X=My.
The following derivatior of the optimal value for b more ox
less follows that given by McNemar (pp. 122-3). We begin by setting

up the function

in which we have N deviations of the form y-y' or y-bx. The sum of
these squared deviations divided by N gives us the function which we
want ‘to minimize by the proper choice of b. We shall choose the pro-
per valus of b by utilizing a theorem from the calculus. According to
this tisorem, ve may minimizethe above functiou by taking its deriva-
tive with respect to b, setticg this derivative equal to zero, and then

solving for b. Thus
§ - Rl -
N

which, set equal to sero, divided by -2, yields

or

then
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The first term involves the correlation coefficient as defined by for-
mula (Al.1), from which definitional formula we see that Ixy/N = SxSy}

and since 2‘.:2/N - Si, we have

erSY - be = 0
or

rSy - be = 0
which gives

b = r &

) 8,

as the proper value for b. We therefc:e have
yy = r 8y x : (A1, 2)
Sx

as the equation for the best-fit line in deviation-score form. By proper

substitution, we have

LA S r_gz (X=M,)

or

T o= sy X o+ (M- TSy M) (AL.3)
C

as the equation in terms of the original or raw-scores. It is this form
which we would use in predicting Y from X. Note that B= b = r(Sy/Sx) is
the slope of the line and that the constant A is the term in parentheses.

Furthermore, note that we can get another form of equation (Al.2) by dividing

both sides of the expression by Sy¢
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The observant reacer will recognize the y' /Sy and x/ Se terms as the X
and (predicted) ¥ variables in standard-score form, or
z; - r Z, (Al.4)
or
z}', - B*Z, (Al1.5)

wherg B* = r. B* is usually referred to as the standardized regression
coafficient or beta weight. It is usually symbolired by the Greek letter
Beta, but, since we do not have a Greek letter for Beta on our keyboard,
veo shall denote it by B*, Thus, we have three formulas for the line of
best f£it - (Al.2), (Al.3), and (Al.5) = corresponding to deviation- " ob-
served-, and etandard-score units, respectively.

We note two additicnal relations. Firgt, we derive a formula

for Byx = byx - the slope of the least-squares equation estimating the

regression of Y on X -~ in terms of deivation scores. From (Al.3), we

have
et S
Sx
- = xy/N Sy
Sx S‘Y Sx
- z—"%/ N (AL.6)
S

(]




Second, just as we can estimate Y values from X values we can extend
our equations to the estimation of X values from Y values, although we
may never desire to do this in practice. Then we may write the equa-

tion for estimating X from Y as follows

X' = Ay * Bny

vhere Ay, = My - T Sx My and By = Lxy/l = 1 8Sg. Thenwe
S

y SY

may write the product

| - 2 N - r2
Byx Pxy —-{’—‘-"-EZ)—é—— (AL.7)

Sy Sy

At this point, it is profitable to review three properties or
interpretations of the correlation coefficient.

A.1.1. Rate of Change. It is obvious from equation (Al.4) that

the correlation coefficient may be interpreted as a rate of change « the
amount of change in variable Y per unit of change in variable X - in
standard-score form It may also be shown that the correlation coz2ffi-
cient has bounds of +1 and -1. Hence, the largest possible change in Y,
givea a staniard deviation ox change in X, is plus or minus one standard
deviation. It should also be noted from equations (Al.2) end (Al.3) that,
if the standard deviations of the X and Y variables are equal, then the
correlation coefficient may be interpreted as a rate of change for the
variables in deviation- or observed-score units.

A.1.2. Accuracy of Prediction. The next property or inter-

pretation of the correlation coefficient concerns the accuracy of pre-

e e s
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diction b; means of the regression equation. That is, we would like to be {

PN

able to set up confidence bands or intervals about the regression line
or predicted y-values in which we can have confidence that most of the ac-

tual observations fall with a specified degree of probability. In order

to accomplish this gosl, we need a measure of dispersion for the regres-
sior line comparable to, say, the standard error of estimate of the mean

of a distribution. 3y introducing sn assumption we may derive such a

Sk et AN VA e ki b 2

measure. We must assums that the standard deviations of the distribution ;

of Y‘values for each value of X are equal in the population from shich

T mom

the sample is drawn. This assumption of homoscedasticity implies that,
1f we had a much larger sample size, the standard deviations of Y-values
for each X value would be very nearly equal.

Note that y-y' (or Y-Y') represents the discrepancy between
estimated and observed values and that Z(y-y')z/N 18 the mean of the
squarad deviations, the root of which will be the standard deviation of
the discrepancies between estimated and observed values. This particu-

lar standard deviation shall be called the standard error of estimate

of the regression of Y on X and shall be denoted by Sy x We may derive

an algebraic form for this expression as follows. By definition,

2 2 2
Sy.x = Z(=X) -~ 2 (yy')
N N

but

s =
3 y rfxx
| Sx

from (Al.2), so




2 2
sy.x = _}__Z(y-rfxx)
K Sx
a 1 = (y%- 2 sy xy+ 12 55 2
N Unspas g
S 2
x Sx .
- 2 2
- P - sy () + f5F ()
N =" XN == N
X Sx
- 2 5 .2 )
Sy - 2r SZ r Sy Sy + r© 8y Sx
Sx s
2 2 2
Sy b Sy
then.
sy.x = Sy l - ra (Aloe)

Hence, we have a second procedure for interpreting the correla-
t.i.a coefficlienty iu terms of the accuracy of prediction or closensss
of £it of the regression line to the data. If no correlation exists, we
see that the error of estimate is Sy. We should alsc note the term in
(A1.8) which involves r 18 V|1 - r2 ., The expression v 1 - r2 1 called

t-s coeffirient of aliemation. Observe that if r = 0, its value is 1 and

the error of estimate is Sy.

A.-1.5. Variance and Correlation. It may be shown (see McNemar,
p. 129) that the variance of a sum (or difference) of two independent
variables is equal to the sum of their separate variances. Furthermore,
it may b. shown \see McNemar, p. 130) that the predicted y' and the re-
sidual (y-y') are independert. Therefore, we have y = y' + (y-y') and,

since the two parts are independent,

2 <2 (AL.9)
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Y X
of this equation by Sg, we get

where S2 is the variance of the residuals, (y-y'). Dividing both sides

2
l = L
¢+ Spx (AL.10)
y
from which we see that, since the two ratios add to unity either one can
be interpreted as a proporcior. In short, the ratio of Sgl to 2 is the

y
proportion of the variance in Y which can be predicted from X, and the

ratio of 85’ < t° S; represents the proportion of the variance of Y which
is left over or remains or camnot be predicted from X. This is the same

variance which results if we square formula (Al.8):

§2

Hence, we may substitute this value in (Al.10)

2
1 = _s;_ + 1-1x2
- .

y
from which we have the ratio

2 2 (Al.11)

St = T
ry

In short, the square of the correlation coefficient gives the proportion of
the total variance of Y which is attributable to variance in X. Also, the
proportion of variance in Y which is due to variables other than X is 1 - 2.

This is a third possible interpretation of r.

. ———— b ~ - - - RS R b sl 5 2 9 W g
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APPENLL. II

THE MATHEMATICS OF MULTIVARIATE CORRELATION AND REGRESSION

We shall now extend our discussion to the multivariate casse in
which we attempt to predict one variable by using several other varia-
bles and to analyze its variance into component parts. We shall find
some similarities to the bivariare case, but we shall also encounter
some significant differences. Again, parts of our derivations more or
less follow those of McNemar (pp. 169-178).

As2.1. The Three-Variable Case. Consider first ths problem
of predicting X; (criterion) from a knowledge of X, and Xy (predixtors).
Geometrically, we can imagine this as involving three reference axes
instead of two as in the bivariate case. Here we can think of the vert-
ical axis as representing X; and the two horizontal axes as represent-
ing X5 and X3. We begin by assuming that the relationship of X1 to Xp
and X3 is linear, i.e., we assume that the functional form of the re-
lationship of the variables in the population of Xj, X5, and Xg values
is of the form X3 = A" + BL X, + Bg Xy in which A" is the (pop-
ulation) value of X; where the plane representing the predicted values
of X; cuts the X; axis (where Xp and Iz are zero), and B} and B} are
the inclinations {population values) of the plane of predicted Xy values
to the X, and Xz axes, respectively (the expected changes in X;, given
a unit of change in Xp and X3, respectively).

As in the bivariate case, our problem is to estimate A", B,
and Bg. Again, this is a least-squares affair -~ the sum of the squares

of the errors of estimate shall be a minimum. In short, we desire values
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for A, B;, and Bp in the equation

Xi -'A+32x2+35x3

or, equivalently, the values by and by ir the deviation-unit equation

xi - ba‘z + bsx5
such that the sum

L (x-x1)? = Z (x;pex))®

is a minimum.

The task of derivation is somewhat simplified if we transfomm
all t.xee sets of values into standard-score form, i.e., if we set
2y = (xf'Mi.)/si‘ Then our equation becomes

2} = B§Zy, + BfZg (A2.1)

-

where B: represents the partial regression coefficient in standard-score

form. As for the bivariate case, these regression weights are usually
called beta coefficients or standardized regreseion coefficients and de-
noted by the Greek letter, Beta. Since we are changing the size of our
unit of measure, it should be noted that, say 35 will not necessarily
equal By = bo. Now we need to determine the value of BX and Bg such tkat

the average of the squared errors, or
2

shall be a minfwm. Since 2y - Z! = Z the function

to be minimized is
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£ o= L Z(z-BEzy- BYzg°
N
As in the bivariate case, the calculus is used to determine

3
ti'e partial derivative of the function first with respect to BE and then

the values of B; and B* which will make this function a minimum. Taking

with respect to B':’,:

dpf = -2L 23 (27 - BSZy- BEZg)
pB2 ¥
.ﬁ‘.!’.f = -2%2x (zl-ngza-n;zs)

de"s" N

These two derivatives must be set equal to zero and then solved simul-
taneously for the unknownms, 3'5 £ad Bg. By performing the indicated mul-

tiplications, suming, and dividing each equation by 2, we get

-522p + B§ LZ5 + B TZgs = O

N N N :

- L2225 + 35}:2223 + ngzzg = 0
N N N

Noting that the sum of squires of standard-scores is unity, whereas any
gum of cross products of standard-scores divided by N is the correlation
between the two variables involved in the cross products, we have by

application to the above equations

-Typ + 135 + B""r:a5 = 0
"rls + B)éra 4 Bg - 0

or
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3*2" +r238§-r12-0
rm§+ %“rn-o

Since the rs in the ahove equations are determinable for any specific

set of data, we may treat them as knowns leaving only the B¥s as unknowns.

t Solution of these two simultaneous equations in two unknowns gives

B§ = T1p - Ti3¥p3

2
2 (A2.2) %
Bf = 113 - Ty3Tp3 ;

T

As soon as the values of B"é’ and B§ have been determined, they ;

can be substituted in the gred:lction eguation

J RS as i,

= B*Z + B*2Z
2 2 3

2 K

so that for a given pair of Zo and Zs values we can predict the standard-

score on the criterion variable. However, it is often more convenient to

POIP L VUREIUT ST RPPIP W PIP o}

deal with deviation- or rawescores. Hence, by replacivg the Zs in the pre-

ceding equations by their values in terms of raw-scores, neans, and stan-

dard deviations, we will have %

Nody o= I -M v B -

S

S1 S 3
or
- W o= By - BNt B - B

After multiplying by Sy and rearranging terms, we have
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Y = . - . -
x! ngilx2+3§ix3+ (11 Bgiua Bgilﬂs) (A2.5)
S5 Ss Sa S3

as the regression equation in raw-score form. From this equation, we see
that our original Bo must equal B (5,/Sp), R = B (Sl/ss), and A = the
parentheses term. We may also derive values for the partial regression

weights in terms of bivariate regression weights from these equations as

& follows
S

= 81 T2 - r13To3

S2 l_rsz

and, since g = BogBzo by formula (A1.7)

; ® S; ryp - r13ro3

Sp 1= BozBgp )
= 51 Txx2/N =« S; (E xxz/N . I xpxg/N)
S. | 8182 5, (788, SoSz
1 - Ba3 B3
= I x1x2/N - I x1x3/N e« X 82!5/N
2 2 Qa
E S2 85 ve
1 - BagBsp

or, since Bjpo = % x1x2/N by formula (Al.), this reduces to

Sp

B, = Bp - (Byz) (Bgp)
1 = Bgs By

(A2.4)

ERIC




~AlS~

Thus, we have an equation for the raw- or deviation-score partial regres-
aion coefficisnts in terms of bivariate raw- or deviation-score regres-
sion coefficients. The notation for this coefficient is often written
Byoe s to {ndicate that it is the regression of variable 1 on variable 2,
controlling for variable 3 (the expected change in variable 1, given a

unit of change in variable 2, controlling for variable 3). Generalizing

this notation, we may write

bigex = By = By (B3) (Byy)
1 - (Bgx) (Biy)

(a2.5)

as the equation for the partial regression coefficient in raw- or devia-
tion=-score form of variable { on variable §, controlling for variable k.
We can ascertain the accuracy of the prediction of X; from the

best combination of X, and Xz by examining the error of predictionm, i.e.,

Xy = X} or S4(z4 = Zi). The sum of the squares of the errors divided by

N will yield the variance of the errors. The square root of this variance

would correspond to the standard error of estimate. let Sgq oz be the

standard error (in Z-units) for predicting X, from X, and Xy, i.2., let

8.1, o3 be the standard deviation of the residual terms (in z-units). Then

2 1.2
Scyo3 = Z(2y-2)
N

2
= % (2y - BSZp - Bf Zg)
N

ik e

T R Y o




N - eE
s b Lot AT A SRS GE STV AT T WIPEW oy
-Al6-

2 2,2 2.2
N N N N

- 23?22125 + 2353;22225
N N

2 .
-1+35+3*2-245r - 2Btr,. + ZBEBET,

3 12 S 15
(A2.6)
which by algebraic manupulation reduces to
- 2
S0 = 1= (BErpp+ Bf ryg) (2.7)

{n terms of standard scores. Of course, S% times this would give the error

variance for raw-scores.
We proceed to define the multiple correlation coefficient as the
correlation between Z; and the best estimate of Z4 from a knowledge of

Zp and Zz. In symbols,

Ri.2s = R‘l‘i = 12 Zi N
W 5g; Sy
- p ¥ )
2, (fz,+ Bz, (A2.8)
¥,
1

Note that, for a sample of values sll = 1, However, it does not follow
that Sli = 1, In order to evaluate this last S, we may think of Z, as
being mnde up of two parts - that which we can estimate plus a regidualy

- !
Zq Z +

] Zy.03

It can be shown that these two parts are independent of each other. Hence,

their variances are additive:

2 21 2
Sg1 = Sgf + S21.23

Q
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or
- g2 2
1 S’i + 85 on
then
2 2
s:i - ]l 811.23

2
However, S.1 ox is nothiug more than the variznce of the prediction errors

as given by (A2.7); hence this becomes by substitution of (A2.7)

Sg1 = Vna'::12 + Birg (A2.9)

Then, by substituting (i2.9) in (A2.8), we have

Ryps = Z2Z (B8Z, + BfZg)
K Vlgrla + BS ryg

- 3522122 + B'gZZIZS

¥ /B, + B
= /BT + By

From formula (A2,10) and (A2.7), we see that we can write the

(A2.10)

standard error of estimate in raw~score form as

- - R2
S1.28 8y V1 RS s (A2.11)

This formula may be used to define the multiple correlation coefficient.

The relationship is

e 2

| o = 1- Suz = 1 S (2.12)
—-—aé—-— e .
8

By substituting from (A2.7), we again have (A2.10).

o s s A S




At this point, we may note the similarity of formula (A2.11) to
the standard error of estimate for the bivariate situation. Thus, the
interpretation of the correlation coefricisnt in terms of reduction in the
error of estimate holds for the multiple correlation coefficient in ex-

actly the same manner as foi the ordinarry bivariafe correlation coeffi-

cient, Furthermore, the interpretation in terms of proportion of var-
iance explained also holds for the multiple correlation coefficient.
Hawéver, in the case of two predictor variables, we find some interest-
1n5‘differencel. Lat us explore those peculiarities.

: We must answer the question as to the relatii: importance of
the two predictor variables as contributers to variation in the criterion
variable. Obviously, the B coefficients in the raw-score regression
equation cannot be interpreted as indicating the relative contribution
of the two indepandent variables since the two B coefficients usually
involve different units of measurement. Therefqre, a Bo twice as large
é as Bz does not imply that Bp is twice as important as Bz, However, the
variables in standard-scere form will be comparable and hence the beta
coefficients in the standard-score form of the regression equation will

be comparable. Since

2 2 2
S, = Sl + 5
* or '
- 2 2
1 S'i + 3.1‘23
and

2 2
1 - s’ 1.23 - P]_o 23
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it follows that
Roox = sfi

In words, Rﬁ.as‘waich corresponds to the proportion of variance explained

by variables 2 and 3 is equal to Sfi, or the variance of the predicted

stand rd-scores.

On the other hand, note that, since

2y = BEZ, + ByZ,

we can indicate the value of Sat as

x]
2 2 2 2
Rog = S = (2" = Z(mpz, + B Zg)
N N
- 2 25 g2
Brzd + BTz + ZEABYIZyZ
N
which 1ir
Ra - s‘al - 3*2 o (A7 18)
1.25 3 P 3 BP5T o5 -

In short, the predicted variance, which coxresponds to the "axplainad"
variance, can be broken down into three additive components. Further-
more, we ree that the relative importance of the variables X, and Xy in
"explaining" variation in X, can be judged by the magnitude of the squares
of the beta coefficients. The third term in formula {(A2.13) represents
a joint zontribution which is a function ¢f the amount of correlation
between the two prediciing variables.

A.2. 2., More Than Three~Variables. The extension of multiple

correlation and regression to include any number of variables involves
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the same principles as for the three-variable case. In other werds,
the interpretation of the regression and cerrelatior coefficients is

the ssme for n as for 5 variables, and the extansion of the formulas

should be obvious.
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